Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineered ; 15(1): 2314888, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38375815

RESUMO

Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 µM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.


Assuntos
Clorófitas , Metais Pesados , Cádmio/toxicidade , Bioacumulação , Perfilação da Expressão Gênica , Plantas/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Clorofila
2.
Microbiol Resour Announc ; 13(2): e0081623, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38179908

RESUMO

Tetratostichococcus sp. P1 shows an acidophilic phenotype which could allow mass-scale monoculture of this green microalga without severe contamination by environmental microorganisms. In this study, we report a chromosome-scale genome assembly for Tetratostichococcus sp. P1.

3.
Mar Biotechnol (NY) ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180637

RESUMO

A marine thraustochytrid, Aurantiochytrium, is a promising organism to produce docosahexaenoic acid (DHA) and squalene. Utilization of inexpensive substances such as proteins in wastes and by-products from the food industry for cultivation is a considerable option to reduce production cost; however, the proteolytic ability of Aurantiochytrium spp. is low compared to taxonomically close Shizochytrium aggregatum. We previously identified extracellular protease (extracellular protease 1, EP1) in S. aggregatum ATCC 28209 from the supernatant of the culture and found that a similar protease gene (EP2) was located downstream of the EP1 gene. In the present study, we created the transformants expressing SaEP1 and/or SaEP2 to enhance the proteolytic ability of Aurantiochytrium sp. 18W-13a strain and cultivated them in the medium containing casein as a test protein substrate. Through SDS-PAGE analysis, we confirmed that casein in the supernatant was more efficiently degraded by the transformants than the wild type, suggesting that the expressed protease(s) were properly expressed and excreted. After 4-day cultivation in the casein medium, the value of optical density at 660 nm and the cell number in the culture of the transformant that expressed both SaEP1 and SaEP2 (designated as EP12 strain) showed 1.48- and 1.38-fold higher than those of wild type, respectively. The DHA and squalene yield of the EP12 strain were respectively 158.3 and 0.23 mg L-1, and these values were 1.42- and 2.01-fold higher than those of wild type, respectively, suggesting that the EP12 created in the present study is a favorable strain for the cultivation using protein-containing medium.

4.
Genes (Basel) ; 14(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136973

RESUMO

A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.


Assuntos
Citocromos b , Synechocystis , Transporte de Elétrons/genética , Synechocystis/genética , Synechocystis/metabolismo , Oxirredução , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plastoquinona/química
5.
Plant Cell Physiol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38147500

RESUMO

DesC1 and DesC2, which are fatty acid desaturases found in cyanobacteria, are responsible for introducing a double bond at the Δ9 position of fatty-acyl chains, which are subsequently esterified to the sn-1 and sn-2 positions of the glycerol moiety, respectively. However, since the discovery of these two desaturases in the Antarctic cyanobacterium Nostoc sp. SO-36, no further research has been reported. This study presents a comprehensive characterization of DesC1 and DesC2 through targeted mutagenesis and transformation using two cyanobacteria strains: Anabaena sp. PCC 7120, comprising both desaturases, and Synechocystis sp. PCC 6803, containing a single Δ9 desaturase (hereafter referred to as DesCs) sharing similarity with DesC1 in amino acid sequence. The results suggested that both DesC1 and DesC2 were essential in Anabaena sp. PCC 7120 and that DesC1, but not DesC2, complemented DesCs in Synechocystis sp. PCC 6803. In addition, DesC2 from Anabaena sp. PCC 7120 desaturated fatty acids esterified to the sn-2 position of the glycerol moiety in Synechocystis sp. PCC 6803.

6.
Plant Cell Physiol ; 64(7): 803-813, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133246

RESUMO

Oleaginous microalgae are gaining great attention as feedstock for biofuels because of their substantial accumulation capacity for neutral lipids in the cytosolic compartment called the lipid droplet (LD). Understanding the regulatory mechanism of neutral lipid accumulation and degradation, which is mediated by LD-associated proteins, is an important issue in improving lipid productivity. However, LD-associated proteins vary among species and are waiting to be characterized in many microalgae. Stramenopile-type LD protein (StLDP) was previously identified as a primary LD protein in the marine diatom Phaeodactylum tricornutum. We produced a knockout mutant of StLDP by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing. Also, we tried to complement this mutant by expressing recognition site-modified StLDP (RSM-StLDP), which is designed to avoid an attack by Cas9 nuclease expressing in the mutant. The RSM-StLDP:enhanced green fluorescent protein was localized to both LDs and the outer chloroplast-endoplasmic reticulum. The decrease in the LD number per cell, increase in LD size and no alteration of neutral lipid content in the mutant under nitrogen deficiency clearly indicate that StLDP acts as an LD scaffold protein. The number of LDs per cell increased in the complemented strain compared to wild-type (WT) cells. The LD morphology in the mutant is probably over-rescued in the complemented strain by the strong function of the nitrate reductase promoter, which is also supported by high neutral lipid content in the complemented strain. The growth of stldp mutant showed a long lag phase relative to WT cells, suggesting that the low surface-to-volume ratio of fused LD decreased the efficiency of LD hydrolysis during the initial growth phase.


Assuntos
Diatomáceas , Diatomáceas/genética , Diatomáceas/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Edição de Genes , Lipídeos , Metabolismo dos Lipídeos/genética
7.
Mol Microbiol ; 119(5): 599-611, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929159

RESUMO

Phototrophic bacteria face diurnal variations of environmental conditions such as light and osmolarity that affect their carbon metabolism and ability to generate organic compounds. The model cyanobacterium, Synechocystis sp. PCC 6803 forms a biofilm when it encounters extreme conditions like high salt stress, but the molecular mechanisms involved in perception of environmental changes that lead to biofilm formation are unknown. Here, we studied two two-component regulatory systems (TCSs) that contain diguanylate cyclases (DGCs), which produce the second messenger c-di-GMP, as potential components of the biofilm-inducing signaling pathway in Synechocystis. Analysis of single mutants provided evidence for involvement of the response regulators, Rre2 and Rre8 in biofilm formation. A bacterial two-hybrid assay showed that Rre2 and Rre8 each formed a TCS with a specific histidine kinase, Hik12 and Hik14, respectively. The in vitro assay showed that Rre2 had DGC activity regardless of its de/phosphorylation status, whereas Rre8 required phosphorylation for DGC activity. Hik14-Rre8 likely functioned as an inducible sensing system in response to environmental change. Biofilm assays with Synechocystis mutants suggested that pairs of hik12-rre2 and hik14-rre8 responded to high salinity-induced biofilm formation. Inactivation of hik12-rre2 and hik14-rre8 did not affect the performance of the light reactions of photosynthesis. These data suggest that Hik12-Rre2 and Hik14-Rre8 participate in biofilm formation in Synechocystis by regulating c-di-GMP production via the DGC activity of Rre2 and Rre8.


Assuntos
Proteínas de Escherichia coli , Synechocystis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Biofilmes , Synechocystis/genética , Synechocystis/metabolismo , GMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
8.
FEBS Lett ; 596(23): 3051-3059, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35997667

RESUMO

Carbonic anhydrases (CAs) are a universal enzyme family that catalyses the interconversion of carbon dioxide and bicarbonate, and they are localized in most compartments including mitochondria and plastids. Thus far, eight classes of CAs (α-, ß-, γ-, δ-, ζ-, η-, θ- and ι-CA) have been characterized. This study reports an interesting gene encoding a fusion protein of ß-CA and ι-CA found in the haptophyte Isochrysis galbana. Recombinant protein assays demonstrated that the C-terminal ι-CA region catalyses CO2 hydration, whereas the N-terminal ß-CA region no longer exhibits enzymatic activity. Considering that haptophytes generally have mitochondrion-localized ß-CAs and plastid-localized ι-CAs, the fusion CA would show an intermediate stage in which mitochondrial ß-CA is replaced by ι-CA in a haptophyte species.


Assuntos
Anidrases Carbônicas , Haptófitas , Haptófitas/genética , Haptófitas/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Proteínas Recombinantes/genética , Fusão Gênica
9.
Mar Biotechnol (NY) ; 24(4): 733-743, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35841466

RESUMO

Squalene has a wide range of applications in the industry sectors of dietary supplements, cosmetics, immunization, and pharmaceuticals. Yet, suitable organisms as the source of squalene are limited. It is reported that the thraustochytrid Aurantiochytrium sp. strain 18W-13a can accumulate high content of squalene. However, squalene production in this organism is fluctuated under various conditions and is not yet optimized for commercialization. In this organism, the mevalonate pathway supplies isopentenyl pyrophosphate, the initial substrate for squalene production. In this pathway, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) is the rate-limiting enzyme. We found that the HMGR activity had a strong positive correlation with the squalene contents in the strain. We constitutively expressed the HMGR in this organism and found that the transformant showed increased and stable production of squalene as well as carotenoids and biomass. These results clearly indicated that the HMGR expression is the bottleneck of squalene synthesis in Aurantiochytrium sp.


Assuntos
Esqualeno , Estramenópilas , Acil Coenzima A/metabolismo , Ácido Mevalônico/metabolismo , Esqualeno/metabolismo , Estramenópilas/genética , Estramenópilas/metabolismo
10.
Biochim Biophys Acta Gene Regul Mech ; 1865(3): 194803, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35272049

RESUMO

The availability of inorganic carbon (Ci) as the source for photosynthesis is fluctuating in aquatic environments. Despite the involvement of transcriptional regulators CmpR and NdhR in regulating genes encoding Ci transporters at limiting CO2, the Ci-sensing mechanism is largely unknown among cyanobacteria. Here we report that a cAMP-dependent transcription factor SyCRP1 mediates Ci response in Synechocystis. The mutant ∆sycrp1 exhibited a slow-growth phenotype and reduced maximum rate of bicarbonate-dependent photosynthetic electron transport (Vmax) compared to wild-type at the scarcity of CO2. The number of carboxysomes was decreased significantly in the ∆sycrp1 at low CO2 consistent with its reduced Vmax. The DNA microarray analysis revealed the upregulation of genes encoding Ci transporters in ∆sycrp1. The membrane-localized SyCRP1 was released into the cytosol in wild-type cells shifted from low to high CO2 or upon cAMP treatment. Soluble His-tagged SyCRP1 was shown to target DNA-binding sites upstream of the Ci-regulated genes sbtA and ccmK3. In addition, cAMP enhanced the binding of SyCRP1 to its target sites. Our data collectively suggest that the Ci is sensed through the second messenger cAMP releasing membrane-bound SyCRP1 into cytoplasm under sufficient CO2 conditions. Hence, SyCRP1 is a possible regulator of carbon concentrating mechanism, and such a regulation might be mediated via sensing Ci levels through cAMP in Synechocystis.


Assuntos
Synechocystis , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , DNA/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Fatores de Transcrição/metabolismo
11.
Mar Biotechnol (NY) ; 24(1): 243-254, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35262804

RESUMO

Thraustochytrids have attracted attention due to the high contents of useful lipids and growth rate. Genus Schizochytrium is commonly used for docosahexaenoic acid (DHA) production, while a strain, which produces a high amount of squalene, has been reported in the genus Aurantiochytrium. These organisms are heterotrophic, and Schizochytrium degrades the extracellular macromolecules, e.g., proteins and polysaccharides, as the nutrients. However, the extracellular lytic enzymes are not well-studied yet. Here, we investigated the induction of extracellular proteases of Schizochytrium aggregatum ATCC 28209. A casein-hydrolytic activity was induced in the nitrogen-limited conditions, and that was also detected by zymography after fractionation by non-heat denatured SDS-PAGE. The proteinous band corresponding to the protease activity was analyzed by MALDI-TOF mass spectrometry after digestion with trypsin. The molecular mass data of the protein fragments were compared to the protein database of S. aggregatum ATCC 28209 in the Joint Genome Institute, and we found that the molecular masses of the six peptides were matched with the prediction from the sequence of a protein, ID 63992, which was annotated as a peptidase S8 family protein. Interestingly, we found that a paralogous protein, ID 99856, was encoded by a gene flanking at the downstream of the gene for ID 63992, and the expression of both genes was similarly induced under the nitrogen-limited conditions. These findings may provide us a key to disclose the induction mechanisms of the extracellular lytic enzymes and the function of the proteolytic enzyme for the nutrition acquisition in thraustochytrids.


Assuntos
Peptídeo Hidrolases , Estramenópilas , Ácidos Docosa-Hexaenoicos , Nitrogênio/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas/metabolismo , Estramenópilas/metabolismo
12.
Biotechnol Rep (Amst) ; 32: e00673, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34621628

RESUMO

Natural astaxanthin is known to be produced by green microalgae, a potent producer of the most powerful antioxidant. To increase the productivity of astaxanthin in microalgae, random mutagenesis has been extensively used to improve the yield of valuable substances. In the presented work, a newly isolated Coelastrum sp. was randomly mutagenized by exposure to ethyl methane sulfonate and further screened using two approaches; an approach for high growth mutant and an approach for high astaxanthin producing mutant with a high-throughput screening method using glufosinate. Among these, mutant G1-C1 that was selected using glufosinate showed the highest of total carotenoids (45.48±1.5 mg/L) and astaxanthin (28.32±2.5 mg/L) production, which was almost 2-fold higher than that of wild type. This study indicates that random mutagenesis via chemical mutation strategy and screening using glufosinate successfully expedited astaxanthin production in a mutated strain of a Coelastrum sp.

13.
Microbes Environ ; 36(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135204

RESUMO

Chionaster nivalis is frequently detected in thawing snowpacks and glaciers. However, the taxonomic position of this species above the genus level remains unclear. We herein conducted molecular analyses of C. nivalis using the ribosomal RNA operon sequences obtained from more than 200 cells of this species isolated from a field-collected material. Our molecular phylogenetic analyses revealed that C. nivalis is a sister to Bartheletia paradoxa, which is an orphan basal lineage of Agaricomycotina. We also showed that C. nivalis sequences were contained in several previously examined meta-amplicon sequence datasets from snowpacks and glaciers in the Northern Hemisphere and Antarctica.


Assuntos
Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Neve/microbiologia , Regiões Antárticas , Basidiomycota/genética , Camada de Gelo/microbiologia , Filogenia
14.
Front Plant Sci ; 12: 639330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815446

RESUMO

Alteration of fatty-acid unsaturation is a universal response to temperature changes. Marine microalgae display the largest diversity of polyunsaturated fatty-acid (PUFA) whose content notably varies according to temperature. The physiological relevance and the molecular mechanisms underlying these changes are however, still poorly understood. The ancestral green picoalga Ostreococcus tauri displays original lipidic features that combines PUFAs from two distinctive microalgal lineages (Chlorophyceae, Chromista kingdom). In this study, optimized conditions were implemented to unveil early fatty-acid and desaturase transcriptional variations upon chilling and warming. We further functionally characterized the O. tauri ω3-desaturase which is closely related to ω3-desaturases from Chromista species. Our results show that the overall omega-3 to omega-6 ratio is swiftly and reversibly regulated by temperature variations. The proportion of the peculiar 18:5 fatty-acid and temperature are highly and inversely correlated pinpointing the importance of 18:5 temperature-dependent variations across kingdoms. Chilling rapidly and sustainably up-regulated most desaturase genes. Desaturases involved in the regulation of the C18-PUFA pool as well as the Δ5-desaturase appear to be major transcriptional targets. The only ω3-desaturase candidate, related to ω3-desaturases from Chromista species, is localized at chloroplasts in Nicotiana benthamiana and efficiently performs ω3-desaturation of C18-PUFAs in Synechocystis sp. PCC6803. Overexpression in the native host further unveils a broad impact on plastidial and non-plastidial glycerolipids illustrated by the alteration of omega-3/omega-6 ratio in C16-PUFA and VLC-PUFA pools. Global glycerolipid features of the overexpressor recall those of chilling acclimated cells.

15.
Microorganisms ; 8(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927844

RESUMO

Biomineralization by calcifying microalgae is a precisely controlled intracellular calcification process that produces delicate calcite scales (or coccoliths) in the coccolithophore Emiliania huxleyi (Haptophycea). Despite its importance in biogeochemical cycles and the marine environment globally, the underlying molecular mechanism of intracellular coccolith formation, which requires calcium, bicarbonate, and coccolith-polysaccharides, remains unclear. In E. huxleyi CCMP 371, we demonstrated that reducing the calcium concentration from 10 (ambient seawater) to 0.1 mM strongly restricted coccolith production, which was then recovered by adding 10 mM calcium, irrespective of inorganic phosphate conditions, indicating that coccolith production could be finely controlled by the calcium supply. Using this strain, we investigated the expression of differentially expressed genes (DEGs) to observe the cellular events induced by changes in calcium concentrations. Intriguingly, DEG analysis revealed that the phosphatidylinositol-specific phospholipase C (PI-PLC) gene was upregulated and coccolith production by cells was blocked by the PI-PLC inhibitor U73122 under conditions closely associated with calcium-induced calcification. These findings imply that PI-PLC plays an important role in the biomineralization process of the coccolithophore E. huxleyi.

16.
PLoS One ; 15(8): e0238265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32845939

RESUMO

Snow algae are microalgae, growing in melting snowpacks, and are thought to act as primary producers in the snow ecosystem. Chloromonas (Volvocales, Chlorophyceae) contains more than 15 snow-inhabiting species. Although vegetative cells and zygotes, or asexual cysts, of snow species of the genus are frequently collected in the field, sexual reproduction and zygote formation in culture have only been induced in C. tughillensis. Here we describe the sexual reproduction of another snow-inhabiting species, C. fukushimae, which was induced using both previously examined and newly established Japanese strains. Mating of isogamous gametes began after mixing two different strains, implying that C. fukushimae is an outcrossing species. Motile and nonmotile zygotes of the species were also described in this report. The nonmotile zygote of C. fukushimae was distinguishable from those of the other snow-inhabiting species of Chloromonas, based on the zygote shape and the presence of several large lipid bodies within the cell. In addition, C. fukushimae carried out sexual reproduction and produced zygotes even under the nitrogen-sufficient condition.


Assuntos
Clorofíceas/crescimento & desenvolvimento , Reprodução/fisiologia , Zigoto/fisiologia , Ecossistema , Japão , Filogenia , Neve
17.
Plant Physiol ; 184(1): 82-96, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32669420

RESUMO

Eukaryotic Δ6-desaturases are microsomal enzymes that balance the synthesis of ω-3 and ω-6 C18-polyunsaturated fatty acids (C18-PUFAs) according to their specificity. In several microalgae, including Ostreococcus tauri, plastidic C18-PUFAs are strictly regulated by environmental cues suggesting an autonomous control of Δ6-desaturation of plastidic PUFAs. Here, we identified two putative front-end Δ6/Δ8-desaturases from O tauri that, together with putative homologs, cluster apart from other characterized Δ6-desaturases. Both were plastid-located and unambiguously displayed a Δ6-desaturation activity when overexpressed in the heterologous hosts Nicotiana benthamiana and Synechocystis sp. PCC6803, as in the native host. Detailed lipid analyses of overexpressing lines unveiled distinctive ω-class specificities, and most interestingly pointed to the importance of the lipid head-group and the nonsubstrate acyl-chain for the desaturase efficiency. One desaturase displayed a broad specificity for plastidic lipids and a preference for ω-3 substrates, while the other was more selective for ω-6 substrates and for lipid classes including phosphatidylglycerol as well as the peculiar 16:4-galactolipid species occurring in the native host. Overexpression of both Δ6-desaturases in O tauri prevented the regulation of C18-PUFA under phosphate deprivation and triggered glycerolipid fatty-acid remodeling, without causing any obvious alteration in growth or photosynthesis. Tracking fatty-acid modifications in eukaryotic hosts further suggested the export of plastidic lipids to extraplastidic compartments.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Especificidade por Substrato , /metabolismo
18.
J Gen Appl Microbiol ; 65(4): 173-179, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30686798

RESUMO

This study gives the first picture of whole RNA-Sequencing analysis of a PCB-degrading microbe, Rhodococcus jostii RHA1. Genes that were highly expressed in biphenyl-grown cells, compared with pyruvate-grown cells, were chosen based on the Reads Per Kilobase Million (RPKM) value and were summarized based on the criteria of RPKM ≥100 and fold change ≥2.0. Consequently, 266 total genes were identified as genes expressed particularly for the degradation of biphenyl. After comparison with previous microarray data that identified highly-expressed genes, based on a fold change ≥2.0 and p-value ≤0.05, 62 highly-expressed genes from biphenyl-grown cells were determined from both analytical platforms. As these 62 genes involve known PCB degradation genes, such as bph, etb, and ebd, the genes identified in this study can be considered as essential genes for PCB/biphenyl degradation. In the 62 genes, eleven genes encoding hypothetical proteins were highly expressed in the biphenyl-grown cells. Meanwhile, we identified several highly-expressed unannotated DNA regions on the opposite strand. In order to verify the encoded proteins, two regions were cloned into an expression vector. A protein was successfully obtained from one region at approximately 25 kDa from the unannotated strand. Thus, the genome sequence with transcriptomic analysis gives new insight, considering re-annotation of the genome of R. jostii RHA1, and provides a clearer picture of PCB/biphenyl degradation in this strain.


Assuntos
Bifenilos Policlorados/metabolismo , RNA-Seq , Rhodococcus/genética , Rhodococcus/metabolismo , Transcriptoma , Compostos de Bifenilo , Mapeamento Cromossômico , Clonagem Molecular , Expressão Gênica , Genes Bacterianos , Piruvatos
19.
Photosynth Res ; 139(1-3): 173-183, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29943360

RESUMO

Recently, microalgae have attracted attention as sources of biomass energy. However, fatty acids from the microalgae are mainly unsaturated and show low stability in oxygenated environments, due to oxidation of the double bonds. The branched-chain fatty acid, 10-methyl stearic acid, is synthesized from oleic acid in certain bacteria; the fatty acid is saturated, but melting point is low. Thus, it is stable in the presence of oxygen and is highly fluid. We previously demonstrated that BfaA and BfaB in Mycobacterium chlorophenolicum are involved in the synthesis of 10-methyl stearic acid from oleic acid. In this study, as a consequence of the introduction of bfaA and bfaB into the cyanobacterium, Synechocystis sp. PCC 6803, we succeeded in producing 10-methyl stearic acid, with yields up to 4.1% of the total fatty acid content. The synthesis of 10-methyl stearic acid in Synechocystis cells did not show a significant effect on photosynthetic activity, but the growth of the cells was retarded at 34 °C. We observed that the synthesis of 10-methylene stearic acid, a precursor of 10-methyl stearic acid, had an inhibitory effect on the growth of the transformants, which was mitigated under microoxic conditions. Eventually, the amount of 10-methyl stearic acid present in the sulfoquinovosyl diacylglycerol and phosphatidylglycerol of the transformants was remarkably higher than that in the monogalactosyldiacylglycerol and digalactosyldiacylglycerol. Overall, we successfully synthesized 10-methyl stearic acid in the phototroph, Synechocystis, demonstrating that it is possible to synthesize unique modified fatty acids via photosynthesis that are not naturally produced in photosynthetic organisms.


Assuntos
Cianobactérias/metabolismo , Ácidos Esteáricos/metabolismo , Mycobacterium/metabolismo , Ácido Oleico/metabolismo , Synechocystis/metabolismo
20.
Sci Rep ; 8(1): 11230, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046151

RESUMO

Alkenones are unusual long-chain neutral lipids that were first identified in oceanic sediments. Currently they are regarded as reliable palaeothermometers, since their unsaturation status changes depending on temperature. These molecules are synthesised by specific haptophyte algae and are stored in the lipid body as the main energy storage molecules. However, the molecular mechanisms that regulate the alkenone biosynthetic pathway, especially the low temperature-dependent desaturation reaction, have not been elucidated. Here, using an alkenone-producing haptophyte alga, Tisochrysis lutea, we show that the alkenone desaturation reaction is catalysed by a newly identified desaturase. We first isolated two candidate desaturase genes and found that one of these genes was drastically upregulated in response to cold stress. Gas chromatographic analysis revealed that the overexpression of this gene, named as Akd1 finally, increased the conversion of di-unsaturated C37-alkenone to tri-unsaturated molecule by alkenone desaturation, even at a high temperature when endogenous desaturation is efficiently suppressed. We anticipate that the Akd1 gene will be of great help for elucidating more detailed mechanisms of temperature response of alkenone desaturation, and identification of active species contributing alkenone production in metagenomic and/or metatranscriptomic studies in the field of oceanic biogeochemistry.


Assuntos
Alcenos/metabolismo , Vias Biossintéticas/genética , Ácidos Graxos Dessaturases/genética , Haptófitas/genética , Catálise , Resposta ao Choque Frio/genética , Regulação Enzimológica da Expressão Gênica/genética , Haptófitas/enzimologia , Haptófitas/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...